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electron would be expected to move in a non-
localized orbital, it does not appear to have been 
previously observed for the case of magnetic 
electrons associated with a normal paramagnetic 
atom. 
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THE STRONG ACID BEHAVIOR OF DECABORANE 

Sir: 
Decaborane, in sharp contrast to the lower 

boranes, dissolves in alcohols, water-alcohol, wa te r -
dioxane and other protolytic solvents without rapid 
hydrolysis1; further, the rate of hydrogen evolution 
as observed by H. C. Beachell and W. A. Mosher2 

for the alcoholysis of decaborane exhibits a marked 
induction period. These observations suggest t ha t 
a reasonable stable intermediate, a precursor to 
the hydrogen-producing reactions, is formed. 

Consistent with these observations we have noted 
tha t the solution of decaborane in these solvents 
produces a strong monoprotic acid without the 
evolution of hydrogen and tha t decaborane is re­
coverable in par t from such solutions. Typically, 
the t i tration of 122 mg. (1.00 millimole) of deca­
borane (approx. 9 5 % pure) dissolved in 7 5 % 
ethyl alcohol-water with 0.10 N sodium hydroxide 
was followed potentiometrically. The ti tration 
curve so obtained was characteristic of a strong 
monoprotic acid, the end-point being observed after 
the addition of 0.96 milliequivalent of base. Back 
ti tration with aqueous hydrochloric acid repro­
duced the same t i trat ion curve. Tha t the deca­
borane structure is probably not destroyed in the 
formation of the strong acid is demonstrated by 
the recovery of decaborane (identified by melting 
point and mixed melting point, 97-98°) from alka­
line water or alcohol-water solution in 3 5 % yield 
by acidification. A large fraction of the decaborane 
apparently is lost through hydrolysis or alcoholysis 
as indicated by vigorous evolution of gas. 

The formation of the strong acid is sufficiently 
slow so tha t its ra te of growth can be followed po­
tentiometrically, spectrophotometrically or con-
ductimetrically. The last method, in 7 5 % wa te r -
dioxane, yielded results sufficiently satisfactory for 
kinetic t reatment . The rate ( — log k$i = 3.16; 
- l o g ku.2 = 3.00; - l o g &21.5 = 2.71; - l o g 
£25.s = 2.57) is first order in decaborane and in­
dependent of hydrogen ion. From the data is de­
rived AH* = 14.2 kcal. mole^1 . 

I t is proposed tha t the hydrogen ion originates 
either by reaction between decaborane and the 
solvent 
B10H14(SoIn.) + H2O = [B10H14OH]-(SoIn.) + H+(SoIn.) 

or by loss of a proton from the decaborane 
B10H14(soln.) = [B10H13]-(soln.) + H' (soln . ) . 

Either process would fit the observed kinetics. 
Deuterium exchange and kinetic experiments 
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which should help to distinguish between them are 
now in progress. 
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ZYGADENUS ALKALOIDS. VII. ON THE STRUCTURE 
OF ZYGADENINE 

Sir: 
The alkamine zygadenine1 (C07H43O7N) and its 

ester alkaloid derivatives have been shown to oc­
cur, alongside germine and its esters, in several 
species of Zygadenus1-4, and Veratrum.b'6 I wish 
to report evidence for structure I for zygadenine. 

OR2 

I, R1 = R2 = R3 = R4 = H 
II, R1 = R3 = R4 = Ac; R2 = H 
III, Ri = R2 = R3 = R1 = Ac 
V, R1 = R4 = Ac; R2 = R3 = H 
VI, R1 = Ac; R2 = R3 = R4 = H 

The order of stability of the zygadenine isomers 
[zygadenine (3-/3-hydroxy-4,9-hemiketal) <isozyga-
denine7 (3-/3-hydroxy-4-keto-9- a-hydroxy-A/B 
ira«s)<pseudozygadenine (3-a-hydroxy-4,9-hemi-
ketal)]2 parallels tha t of the veracevine isomers and 
differs from tha t of the germine series.8 Zyga­
denine forms a tr iacetate (II) upon acetylation 
with acetic anhydride alone; acetylation with 
acetic anhydride-pyridine affords a te traacetate 
(III) . 8 Acetylation of zygacine acetonide3 (zyga-
denine-14,15-acetonide-3-acetate) with acetic an­
hydride yields zygadenine-14,15-acetonide-3,l 6-di-
acetate (IV), m.p. 271-272° d e c , [a]23D - 29° 
(py.). Found: C, 66.33; H, 8.35; acetyl, 13.61. 
Hydrolysis of IV with dilute mineral acid affords 
zygadenine-3,16-diacetate (V), m.p. 255-257° d e c , 
[a]23D - 50° (py.). Found: C, 64.69; H, 8.17; 
acetyl, 14.83; equiv. wt., 582. Periodate titra­
tions indicate the following uptakes : zygadenine 
(I), 3 mole; zygacine3,4 (VI), 2 mole; zygadenine 
diacetate (V), 1 mole; zygadenine triacetate (II) , 
0 mole; zygacine acetonide, 0 mole. Formulation 
1 for zygadenine was first conceived as a reason­
able rationalization of the above facts. 
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